

Reducing residues in strawberries through integrated pest and disease management in commercial UK production systems

Angela Berrie¹, Jerry Cross¹ Jean Fitzgerald¹, Michelle Fountain¹, Chantelle Jay¹, Tim O'Neill², Robert Saville¹, Erika Wedgwood², and Xiangming Xu¹

¹ East Malling Research ² ADAS UK Ltd. Harriet Roberts Harriet.Roberts@adas.co.uk

www.adas.co.uk

Background UK Strawberries

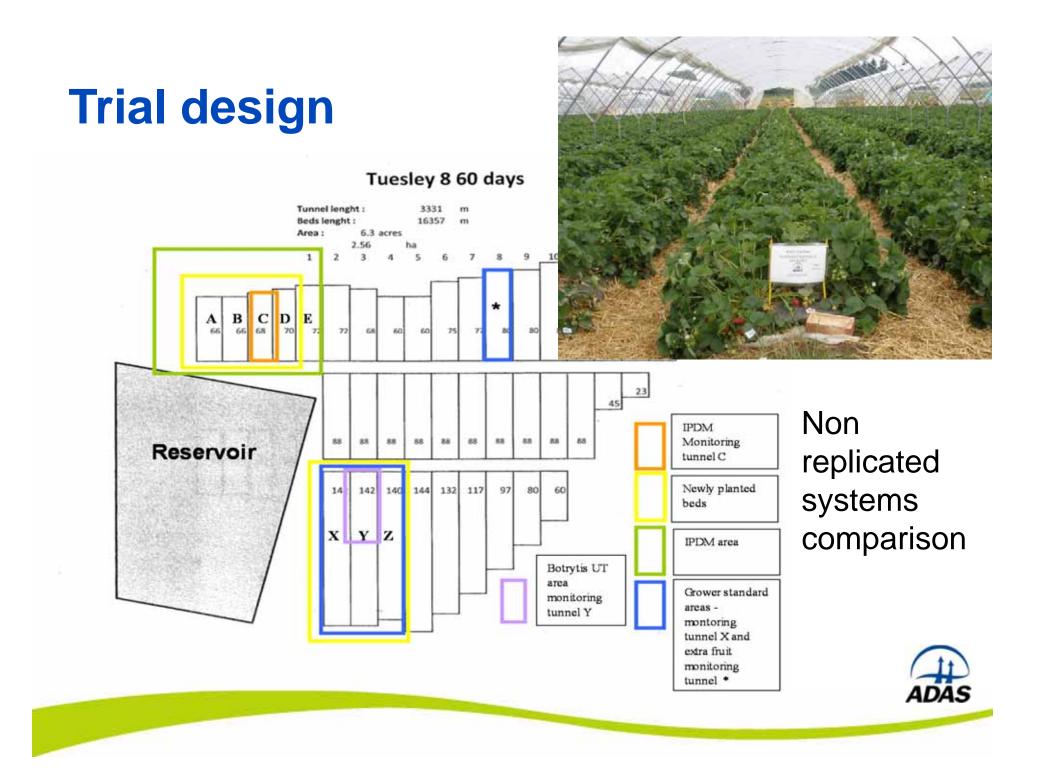
- UK produces 96,000 T of strawberries per year with a value of £ 220,000,000
- Polytunnel production pros and cons
- MRLS and retailers
- Biological and chemical controls

Project aim


Develop and evaluate alternative, sustainable, non-pesticidal methods for managing pests and diseases with the aim of greatly reducing (by >50%) pesticide use whilst not compromising fruit yield and quality.

HortLINK project

- ADAS Jointly with East Malling Research
- Funded by Defra, HDC and a large consortium
- 5 year project
- First three years development of IPDM techniques for 6 pest and disease targets
- Year 4 and 5 integrated these with a whole strawberry program



Treatments and sites

5 sites over 2 years

- 3 sites to compare each year
- 2 June bearer and 1 Everbearer each year
- Slightly different strategies employed on each site but basic IPDM approaches consistent

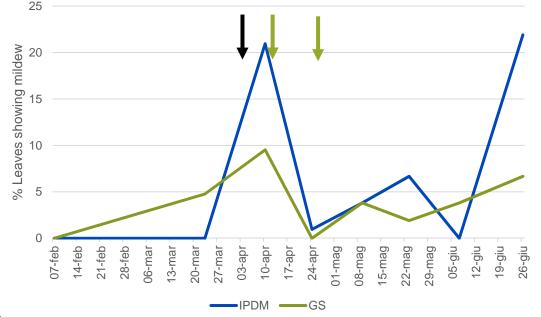
2011						
Site 1	Site 2	Site 3				
Surrey	Kent	Kent				
June bearer – Elsanta in soil	June bearer – Sonata table top in coir	Everbearer – Amesti in soil				
IPDM + Bumble bees	IPDM + BOTEM and extra trapping	IPDM + BOTEM/Honey bees Alyssum trap plants and bug vaccing				
2012						
Site 1	Site 4	Site 5				
Surrey	Kent	Kent				
Main season – Elsanta in soil	June bearer – Elsanta table top in coir	Everbearer – Amesti in soil				
IPDM + Bumble bees	IPDM + BOTEM and extra trapping	IPDM + BOTEM/bumble bees Alyssum trap plants and bug vaccing				

What was done

- Reduction of initial inoculum
- Development of risk-assessment system for better timing of management practices
- Increased use of BCAs and natural products during flowering.

Diseases - Powdery Mildew

Approach


- Utilise forecasting model developed by Fera amended by EMR
- Temperature and humidity loggers in field – 30 minute recordings
- Powdery mildew prediction model to time protectant and curative sprays
- Field monitoring to support
- Out of season fungicide applications clean up inoculum

All 5 sites used this approach

Diseases - Powdery Mildew

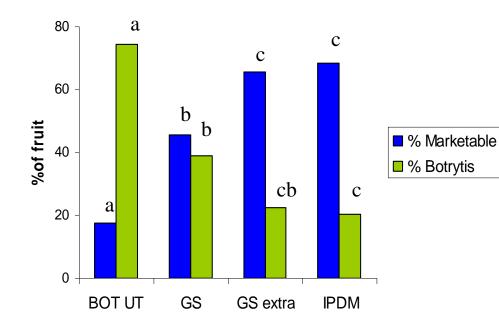
Results

2012 early season crop with a low mildew pressure. Higher but not damaging levels of mildew observed with model timed applications Site 1 - 2012 IPDM - 1 fungicides and 2 Potassium bicarbonate applications compared with 7 fungicides in GS High pressure sites spray coverage and hygiene critical to success

Diseases - Botrytis

Approach

- BOTEM disease forecasting model prior to and after flowering to trigger Prestop or Serenade ASO applications
- Bombus terrestis Audax bumble bees vectoring Prestop Mix (Gliocladium catenulatum) through flowering
- Tight hygiene through harvest removing all waste fruit



2 sites each year used this approach

Diseases - Botrytis

2nd fruit pick - 3 days cold store, 4 day ambient - 7 day assessment

- Site 1 Bees in 2012 ~ 960g
 Prestop Mix delivered per ha over a 9 wk flowering period by bees
- Site 4 BOTEM in 2012 triggered 4 fungicides and 2 BCA's in IPDM tunnels
- Grower standard in both cases received 11 fungicides against *Botrytis* in the same period

Equivalent and in certain cases lower levels of fruit *Botrytis* observed in samples of IPDM fruit after incubation across all sites and years

Pests – Capsid bugs

1.) *Lygocoris pabulinus* and *Lygus rugulipennis* - pheromone trapping systems <u>Results</u>

Successfully trapped the pest – low numbers detected did not reach a threshold for control

2.) Alyssum trap plants and bug vaccing 2011/2 Results

Establishing the Alyssum and timing flowering correctly along with set up of bug vac hindered this approach in 2012

Pests - Aphids

1.) Autumn thiacloprid (Calypso) applications

2.) APHIDSURE fragaria aphid parasitoid mix 1 tube/200m² 3 releases at 3 wk intervals

Results

Mixed results in both years

Most success was achieved where the parasitoids were introduced preventatively 1 to 2 wks after the plants started growing

Strategies for early forced crops under fleece need to be examined – temperature consideration

Pests – Strawberry blossom weevil

White cross vane supertraps and pheromone lures + PV2 36/ha over the IPDM area

Results

SBW successfully trapped at all sites - low numbers and little damage observed

Threshold for control was not reached thus there was no unnecessary pesticide application for this pest

Other Pests – Two-spotted spider mites

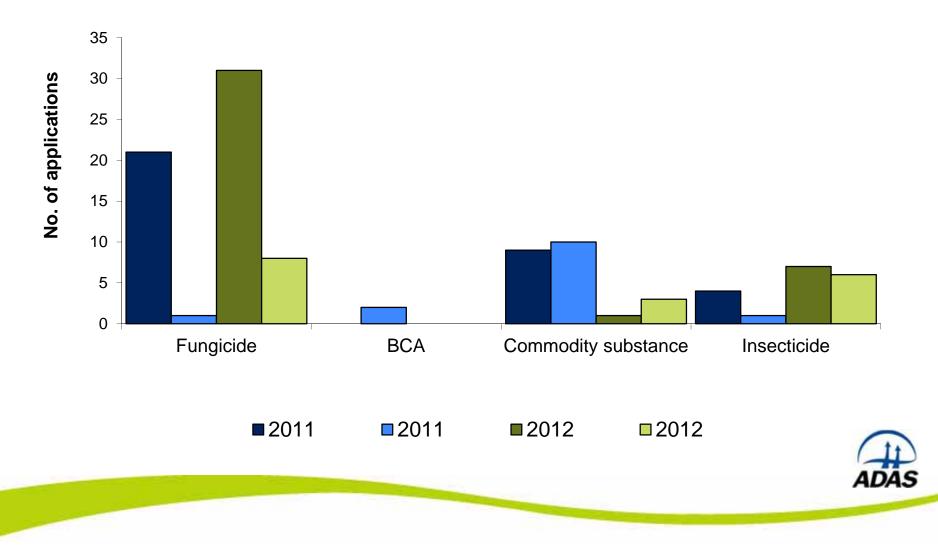
<u>**TSSM**</u> – Post harvest insecticide and *Phytoseiulus persimilis* $10/m^2$ at first sign of pest

<u>WFT and Tarsonemid</u> - *Neosieulus (Amblyseius) cucumeris* sachets 1 every 2 m of bed, supplemented with loose product as required

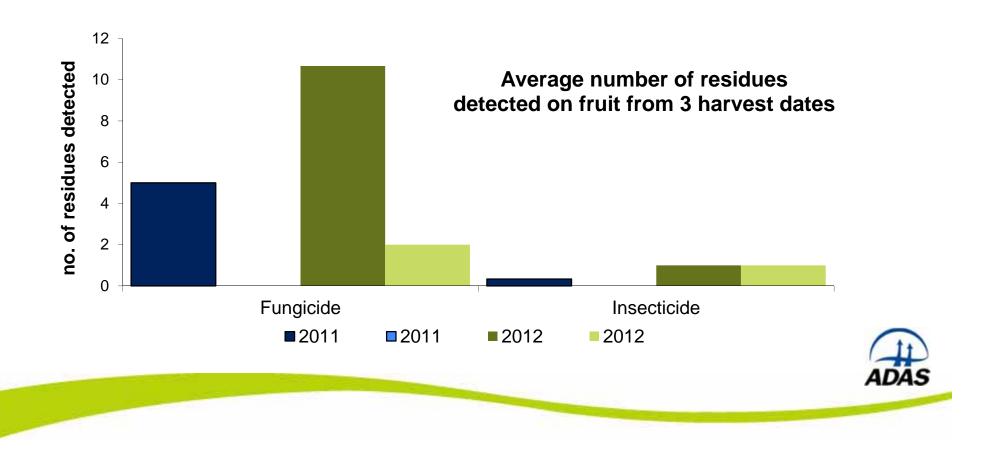
Already widely adopted but integration with a more complete IPM strategy appeared to give at times better control of these pests in IPDM plots

Yield – Site 1

weight in kg for 70 m length, 5 bed tunnel


Date	Class 1	Waste	% Class 1	
IPDM	601.6	160.9	78.9	
GS	602.7	472.5	56.1	
Bot UT	518.6	548.1	48.6	
Field total				
2.5 ha	54 tonnes	15.6 tonnes	77.5	

All but 1 site equivalent or better % class 1 fruit


Comparison of number of pesticides applied for IPDM & GS at Site 1 2011-12

Far fewer pesticides applied over two years

Pesticide residues Site 1 2012

- No residues detected above MRL's at any site
- At site 1 on average 80% fewer residues detected on fruit from IPDM tunnels over 2 years.
- Majority of residues detected in GS were from fungicides against *Botrytis*
- Similar trends of reduced residues observed at other sites in 2012

Residue analysis - Site 1 2012

	MRL	Residue levels for IPDM and Grower tunnels (mg/kg)					
	mg/Kg	18-	May	27-1	May	12-	Jun
Chemical		GS	IPDM	GS	IPDM	GS	IPDM
Azoxystrobin	10	0.10		0.02		0.01	
Boscalid	10	0.14	0.01	0.07		0.04	
Buprimate	1			0.06		0.01	
Cyprodinil	5	0.10	0.02	0.04		0.02	
Fludioxonil	3	0.07		0.03		0.02	
Iprodione Kresoxim	15	0.19	0.02	0.12		0.10	
Methyl	1	0.01					
Myclobutanil	1	0.05		0.02		0.01	
Primicarb	3			0.04			
Pyraclostrobin	1	0.05		0.01			
Pyrimethanil	5	0.45	0.05	0.27		0.17	
Quinoxyfen	0.3	0.01	0.01				
Fenhexamid	5	0.16	0.01			0.24	
Pirimicarb	3	0.06					
Thiacloprid	1	0.04	0.04			0.01	0.01

Cost differences – compared with standard UK program

Target pest/disease	Approach	Cost/ ha/ annum £ (excl VAT)
Botrytis	Bee vectored Prestop Mix	+ £ 115 (31% 个)
BOTEM model and timed fungicide applications	Variable depending on weather condition	ons +/-
Powdery mildew	Timed applications to forecast model - Variable depending on disease pressure and weather	2012 season - £404 (45% ↓)
Aphids	Aphid parasitoid 6 wasp mix	+ £ 1,731 (1,558% ↑)
Strawberry blossom weevil	Grid of 36 bucket traps and lures per hectare.	+ £ 449 (375% ↑)
Two spotted spider mite	High introduction rates of Phytoseiulus persimilis	+ £ 404 (580% ↑)
Capsids	Green cross vane bucket traps and blue sticky traps for	+£86 (324% ↑)
Western flower thrips and	N. cucumeris ABS release sachets,	• /
tarsonemid mites	followed by loose product	+ £ 325 (62% ↑)
Earwigs	Insect barrier glue on table top legs	+ £ 94 (115% †)
Net cost change		+ £ 2,800 (104 % †)

Strawberry = £50,000 /ha (gross)

Summary

- IPDM components need to be tailored to individual crop and site risk
- Monitoring is key
- Overall IPDM appears more successful for early and mid season June bearer crops
- However as the season progresses and with Everbearer crops the pest and disease pressure can build rapidly and IPDM strategies can become overwhelmed.
- Results over 2 years and 5 sites support the use of IPDM to manage pests and diseases
- IPDM strategies used appeared to be as effective as the host grower's standard practices. Fruit quality and yield was maintained with far fewer detections of pesticide residues in fruit.

Acknowledgements

- EMR and ADAS colleagues
- Growers who supported us in the conduct of commercial trials
 Funding heating
- Funding bodies:
- Industry Collaborators:

Berry Gardens, Berry World Ltd, Summer Fruit Company, Mack Multiples Division, Marks & Spencer plc, Sainsbury's plc, International Pheromone Systems Ltd, Horticultural Development Company, East Malling Trust, East Malling Ltd, Jane & Paul Mansfield Soft Fruit Ltd, Agralan Ltd, Robert Boucher and Son, Red Beehive Company Ltd, Biological Crop Protection Ltd, Koppert UK Ltd

HDC

